A User Study of Perceived Carbon Footprint

Victor Kristof, Valentin Quelquejay-Leclère, Robin Zbinden, Lucas Maystre, Matthias Grossglauser, Patrick Thiran

Information and Network Dynamics Lab, School of Computer and Communication Sciences, EPFL

Introduction

EPFL

Goal: Understand how people <u>perceive</u> the carbon footprint of their actions.

Problem: Except for experts, it is very difficult to estimate CO₂ emissions in <u>absolute</u> terms.

Actions

Let \mathcal{A} be a set of M actions.

Example:

- Flying from London to New York
- Light your house with LED
- Eat meat for a year

Let (*i*, *j*, *y*) be a triplet encoding that action *i* has

Model

Given some parameters w_i and w_j representing the perceived carbon footprint of actions *i* and *j*, we model the (log-)impact ratio as

```
\log y = w_i - w_j + \epsilon = \mathbf{x}^{\mathsf{T}} \mathbf{w} + \epsilon,
```

where ϵ is a zero-mean Gaussian noise with variance σ_{n}^2 .

Idea: It is easier to estimate the <u>relative</u> carbon footprint between two actions!

an impact ratio of y in \mathbf{R} over action j.

Likelihood

We cast the problem of inferring a population's global perception from pairwise comparisons as a <u>Bayesian linear regression</u>.

Likelihood: For a dataset of *N* independent triplets, the likelihood of the model is

 $p(\mathbf{y} | \mathbf{X}, \mathbf{w}) = \prod_{i=1}^{N} p(y_i | \mathbf{x}_i^{\mathsf{T}} \mathbf{w}, \sigma_n^2) = \mathcal{N}(\mathbf{X} \mathbf{w}, \sigma_n^2 \mathbf{I}).$ Comparison matrix $\mathbf{X} \in \mathbf{R}^{N \times M}$ Parameter vector $\mathbf{w} \in \mathbf{R}^M$

Posterior

We assume a <u>Gaussian prior</u> for the weight parameters $\boldsymbol{w} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}_p)$ $\boldsymbol{\mu} = \mathbf{1}c, c = \frac{1}{M} \sum_{i=1}^{M} v_i$ $\boldsymbol{\Sigma}_p = \sigma_p^2 \boldsymbol{I}$

Posterior: The posterior distribution of the weight parameters given the data is

Active Learning

Data

During one session of the quiz, a user <u>sequentially</u> answers comparison questions. Active learning enables us to <u>maximize the information</u> extracted from a session.

Let Σ_N and Σ_{N+1} be the covariance matrices of the posterior distribution when N and N+1 comparisons have been respectively collected. Let x be the new (N+1)-th comparison vector. We want to select the pair of actions to compare that maximizes the <u>total information gain</u>

$$\Delta S = S_N - S_{N+1} = \frac{1}{2} \log(1 + \sigma_n^{-2} \mathbf{x}^{\mathsf{T}} \mathbf{\Sigma}_N \mathbf{x}).$$

Entropy of multivariate Gaussian \mathbf{y} $\mathbf{\Sigma}_N = [\sigma_{ij}^2]_{i,j=1}^M$

To maximize ΔS , we maximize $x^{\mathsf{T}} \Sigma_N x$ for all possible x in our dataset. We seek, therefore, to find

$$(i^{\star}, j^{\star}) = \underset{i,j}{\operatorname{argmax}} \{ \sigma_{ii}^2 + \sigma_{jj}^2 - 2\sigma_{ij}^2 \}.$$

We compile a set \mathcal{A} of M = 18 actions.

We collect a dataset of N = 2183 triplets from a population of 178 users on a university campus (mostly students between 16 and 25 years old).

Results

10 ⁴ True values		
Perceived values	Elvip economy class for a 800 km round trip	Fly in first class on a 12000-km round-trip
Take the train on a 1000-km round-trip		

