Alexander Immer*, Victor Kristof*, Matthias Grossglauser, Patrick Thiran

victor.kristof@epfl.ch

Information and Network Dynamics Lab (indy.epfl.ch) — Oral Presentation – KDD 2020

Sub-Matrix Factorization for Real-Time Vote Prediction

-

1. 7.

Voting Patterns

This Work

Two Assumptions:

2

(Demographics, Culture, History, ...)

Correlation Between Votes...

...and Between Regions Anti-correlated Correlated

The World is Not Red and Blue

Food Sovereignty

Voting « In favor » = **Left**-Leaning

Deportation of Criminal Foreigners

Voting « In favor » = **Right**-Leaning

Elections (multiple outcomes)

Fraction of votes Percentage of « yes »

A Wild VOTE Appears!

Votes

New Vote

Regions

A Wild VOTE Appears!

Votes Ne

Regions

A Wild VOTE Appears!

Votes N

Regions

Unobserved

Sub-Matrix Factorization

Singular Value Decomposition

Region embeddings

Sub-Matrix Factorization

Singular Value Decomposition

Region embeddings

Sub-Matrix Factorization

Singular Value Decomposition

Region embeddings

X

Embedding of the New Vote

Singular Value Decomposition

Region embeddings

Vote embeddings

Generalized Linear Model

Singular Value Decomposition

Region embeddings

Singular Value Decomposition

Region embeddings

Singular Value Decomposition

Region embeddings

Singular Value Decomposition

Region embeddings

Х

Experiment: Datasets

Country	Туре	Region	# Regions	# Votes	# Parties	Period
Switzerland	Binary	Municipality	2 196	330	_	1981-2020
US	Binary	State	50	11	-	1976-2016
Germany	Categorical	State	16	6	5	1990-2009
Germany	Categorical	District	538	5	5	1990-2005

Experiment: Swiss Referenda

Prediction Task

- Train on 300 votes and 2196 regions
- Test on **follwing vote** (26 test votes)
- Simulate 100 random reveal orders
- Report averaged **MAE** and **accuracy**

Baselines

- Running Average
- Standard Matrix Factorization (ALS)

<u>Our Algorithm</u>

- Gaussian Likelihood (not reported)
- Bernoulli Likelihood

With 10 municipalities: MAE is less than 2% and accuracy is more than 95%

The performance of our algorithm will prove to be much better with **real data**!

Experiment: German Elections

Prediction Task

- Elections with **5 political parties**
- Train on **5 votes** (**4 votes**, for districts)
- Test on vote 6 (vote 5)
- Simulate 100 random reveal orders
- Report MAE and average displacement

Baseline: Running Average

<u>Our Algorithm</u>

- Gaussian Likelihood (not reported)
- Categorical Likelihood

With 30 districts (average #districts per state): MAE is less than 0.5% (10x better than with 1 state)!

A **finer level of granularity** provides better performance, even if the number of voters is the **same**!

Ideological Space: Swiss Municipalities

We use **t-SNE** to visualize to **matrix** of all municipality embeddings

Ideological Space: Swiss Municipalities

Ideological Space: German Districts

We project the **district embeddings** onto the first two dimensions of the **vote space**

Real-Time Prediction

Actual Swiss Referenda in 2019 and 2020

ltem	Outcome [%]	Prediction [%]	Diffe
Tax Reform	66,38	67,90	
Weapon Regulation	63,73	63,52	
Affordable Houses	42,95	41,57	
Ban on Homophobia	63,09	62,94	

<u>At 12pm: 13% of the results are available, prediction is 1% off</u>

Web platform at http://predikon.ch

21

Web platform at http://predikon.ch

22

Web platform at http://predikon.ch

On the right part above, each municipality is shown by a dot. This representation is obtained directly from all the results to national-level issue votes, using a dimensionality reduction technique. Overall, two municipalities are close to each other in this space if they vote similarly. The axes capture the

risé — www.predikon.ch/patterns	<u>د</u>	
REMAPPING VOTE RESULTS 🔻	ABOUT	

23

Thank you! http://predikon.ch

Data, code, and **Python library** are on GitHub:

Connect with me on Twitter! **@VictorKristof**

()/indy-lab/submatrix-factorization

Or scan this code

EPFL indy.epfl.ch

Or reach out by email! victor.kristof@epfl.ch